Question		Answer	Marks	Guid	dance	
1	(i)	$\frac{d y}{d x} = \sin 2x + 2x \cos 2x$ $\frac{d y}{d x} = 0 \text{ when } \sin 2x + 2x \cos 2x = 0$ $\Rightarrow \frac{\sin 2x + 2x \cos 2x}{\cos 2x} = 0$ $\Rightarrow \tan 2x + 2x = 0 *$	M1 A1 M1	$d/dx(\sin 2x) = 2\cos 2x \text{ soi}$ cao, mark final answer equating their derivative to zero, provided it has two terms must show evidence of division by $\cos 2x$	can be inferred from $dy/dx = 2x \cos 2x$ e.g. $dy/dx = \tan 2x + 2x$ is A0	
			[4]			
	(ii)	At P, $x \sin 2x = 0$ $\Rightarrow \sin 2x = 0$, $2x = (0)$, $\pi \Rightarrow x = \pi/2$ At P, $dy/dx = \sin \pi + 2(\pi/2) \cos \pi = -\pi$ Eqn of tangent: $y - 0 = -\pi(x - \pi/2)$	M1 A1 B1 ft M1	$x = \pi/2$ ft their $\pi/2$ and their derivative substituting 0, their $\pi/2$ and their $-\pi$ into	Finding $x = \pi/2$ using the given line equation is M0 or their $-\pi$ into $y = mx+c$, and then	
		$\Rightarrow \qquad y = -\pi x + \pi^2/2$ $\Rightarrow \qquad 2\pi x + 2y = \pi^2 *$ When $x = 0$, $y = \pi^2/2$, so Q is $(0, \pi^2/2)$	A1 MIA1	substituting 0, then $\pi/2$ and then $\pi/2$ must $y - y_1 = m(x - x_1)$ NB AG can isw inexact answers from $\pi^2/2$	evaluating c: $y = (-\pi)x + c$, $0 = (-\pi)(\pi/2) + c$ M1 $\Rightarrow c = \pi^2/2$ $\Rightarrow y = -\pi x + \pi^2/2 \Rightarrow 2\pi x + 2y = \pi^2 * A1$	
		when $x = 0$, $y = \pi/2$, so Q is $(0, \pi/2)$	[7]			
	(iii)	Area = triangle OPQ – area under curve Triangle OPQ = $\frac{1}{2} \times \frac{\pi}{2} \times \frac{\pi^2}{2} [= \frac{\pi^3}{8}]$	M1 B1cao	soi (or area under PQ – area under curve allow art 3.9	area under line may be expressed in integral form or using integral:	
				$\int_{0}^{\pi/2}$	$\left(\frac{1}{2}\pi^2 - \pi x\right) dx = \left[\frac{1}{2}\pi^2 x - \frac{1}{2}\pi x^2\right]_0^{\pi/2} = \frac{\pi^3}{4} - \frac{\pi^3}{8} \left[=\frac{\pi^3}{8}\right]$	
		Parts: $u = x$, $dv/dx = \sin 2x$	M1	condone $v = k \cos 2x \sin x$	<i>v</i> can be inferred from their ' <i>uv</i> '	
		$du/dx = 1, v = -\frac{1}{2}\cos 2x$ $\int_0^{\pi/2} x\sin 2x dx = \left[-\frac{1}{2}x\cos 2x\right]_0^{\pi/2} - \int_0^{\pi/2} -\frac{1}{2}\cos 2x dx$	A1ft	ft their $v = -\frac{1}{2}\cos 2x$, ignore limits		
		$= \left[-\frac{1}{2}x\cos 2x + \frac{1}{4}\sin 2x \right]_{0}^{\pi/2}$	A1	$[-\frac{1}{2}x\cos 2x + \frac{1}{4}\sin 2x]$ o.e., must be correct at this stage, ignore limits		
		$= -\frac{1}{4}\pi\cos\pi + \frac{1}{4}\sin\pi - (-0\cos\theta + \frac{1}{4}\sin\theta) = \frac{1}{4}\pi[-0]$	Alcao	(so dep previous A1)		
		So shaded area = $\pi^3/8 - \pi/4 = \pi(\pi^2 - 2)/8^*$	A1 [7]	NB AG must be from fully correct work		

2(i)	$\int_{0}^{1} \frac{x^{3}}{1+x} dx let u = 1+x, \ du = dx$			
	when $x = 0$, $u = 1$, when $x = 1$, $u = 2$	B1 B1	a = 1, b = 2	seen anywhere, e.g. in new limits
	$= \int_{1}^{2} \frac{(u-1)^{3}}{u} du$	DI	(u-1)/u	
	$= \int_{1}^{2} \frac{(u^3 - 3u^2 + 3u - 1)}{u^3 - 3u^2 + 3u - 1} du$	M1	expanding (correctly)	
	$= \int_{1}^{2} (u^{2} - 3u + 3 - \frac{1}{u}) du^{*}$	A1dep	$dep du = dx (o.e.) \mathbf{AG}$	e.g. $du/dx = 1$, condone missing dx's and du's, allow $du = 1$
	$\int_{0}^{1} \frac{x^{3}}{1+x} dx = \left[\frac{1}{2}u^{3} - \frac{3}{2}u^{2} + 3u - \ln u\right]^{2}$	B1	$\left[\frac{1}{3}u^{3} - \frac{3}{2}u^{2} + 3u - \ln u\right]$	
	$= (\frac{8}{6} - 6 + 6 - \ln 2) - (\frac{1}{6} - \frac{3}{6} + 3 - \ln 1)$	M1	substituting correct limits dep	upper – lower; may be implied from 0.140
	$=\frac{5}{6} - \ln 2$	A1cao [7]	must be exact – must be 5/6	must have evaluated $\ln 1 = 0$
(ii)	$y = x^2 \ln(1+x)$	M1	Product rule	
\Rightarrow	$\frac{dy}{dx} = x^2 \cdot \frac{1}{1+x} + 2x \cdot \ln(1+x)$	B1 A1	d/dx (ln(1 + x)) = 1/(1 + x) cao (oe) mark final ans	or d/dx (ln u) = 1/ u where u = 1 + x ln1+ x is A0
(⇒	$=\frac{x^2}{1+x}+2x\ln(1+x)$ When $x = 0$, $dy/dx = 0 + 0.\ln 1 = 0$ Origin is a stationary point)	M1 A1cao [5]	substituting $x = 0$ into correct deriv www	when $x = 0$, $dy/dx = 0$ with no evidence of substituting M1A0 but condone missing bracket in $ln(1+x)$
(iii)	$A = \int_0^1 x^2 \ln(1+x) \mathrm{d} x$	B1	Correct integral and limits	condone no dx , limits (and integral) can be implied by subsequent work
	let $u = \ln(1+x)$, $dv / dx = x^2$			
	$\frac{\mathrm{d}u}{\mathrm{d}x} = \frac{1}{1+x}, \ v = \frac{1}{3}x^3$	M1	parts correct	u, du/dx , dv/dx and v all correct (oe)
\Rightarrow	$A = \left[\frac{1}{3}x^{3}\ln(1+x)\right]_{0}^{1} - \int_{0}^{1}\frac{1}{3}\frac{x^{3}}{1+x}dx$	A1		condone missing brackets
	$=\frac{1}{3}\ln 2 - (\frac{5}{18} - \frac{1}{3}\ln 2)$	B1	$=\frac{1}{3}\ln 2 - \dots$	
	$=\frac{1}{3}\ln 2 - \frac{5}{18} + \frac{1}{3}\ln 2$	B1ft	$\dots - 1/3$ (result from part (i))	condone missing bracket, can re-work from scratch
	$=\frac{2}{3}\ln 2 - \frac{5}{18}$	A1	cao	oe e.g. = $\frac{12 \ln 2 - 5}{18}$, $\frac{1}{3} \ln 4 - \frac{5}{18}$, etc but must have evaluated ln 1 =0
		[6]		Must combine the two ln terms

PhysicsAndMathsTutor.com

3(i)	$\frac{\mathrm{d} y}{\mathrm{d} x} = \frac{x^2 \cdot \frac{1}{x} - \ln x \cdot 2x}{x^4}$ $= \frac{x - 2x \ln x}{x^4}$ $= \frac{1 - 2 \ln x}{x^3}$	M1 B1 A1 [4]	quotient rule with $u = \ln x$ and $v = x^2$ d/dx (ln x) = 1/x soi correct expression (o.e.) o.e. cao, mark final answer, but must have divided top and bottom by x	Consistent with their derivatives. $udv \pm vdu$ in the quotient rule is M0 Condone $\ln x.2x = \ln 2x^2$ for this A1 (provided $\ln x.2x$ is shown) e. $\frac{1}{x^3} - \frac{2\ln x}{x^3}$, $x^{-3} - 2x^{-3}\ln x$
or	$\frac{d y}{d x} = -2x^{-3} \ln x + x^{-2} \left(\frac{1}{x}\right)$ $= -2x^{-3} \ln x + x^{-3}$	M1 B1 A1 A1 [4]	product rule with $u = x^{-2}$ and $v = \ln x$ d/dx (ln x) = 1/x soi correct expression o.e. cao, mark final answer, must simplify the x^{-2} .(1/x) term.	or vice-versa
(ii)	$\int \frac{\ln x}{x^2} dx \text{let } u = \ln x, du/dx = 1/x$ $dv/dx = 1/x^2, v = -x^{-1}$ $= -\frac{1}{x}\ln x + \int \frac{1}{x} \cdot \frac{1}{x} dx$	M1 A1	Integration by parts with $u = \ln x$, $du/dx = 1/x$, $dv/dx = 1/x^2$, $v = -x^{-1}$ must be correct, condone + c	Must be correct
	$= -\frac{1}{x}\ln x + \int \frac{1}{x^2} \mathrm{d} x$			at this stage . Need to see $1/x^2$
	$= -\frac{1}{x} \ln x - \frac{1}{x} + c$	A1	condone missing c	
	$=-\frac{1}{x}(\ln x+1)+c^{*}$	A1 [4]	NB AG must have <i>c</i> shown in final answer	

4(i) $\int_0^1 \frac{2x}{x^2 + 1} dx = \left[\ln(x^2 + 1)\right]_0^1$ = ln 2	M2 A1 [3]	$[\ln(x^2 + 1)]$ cao (must be exact)
or let $u = x^2 + 1$, $du = 2x dx$ $\Rightarrow \int_0^1 \frac{2x}{x^2 + 1} dx = \int_1^2 \frac{1}{u} du$ $= [\ln u]_1^2$ $= \ln 2$	M1 A1 A1 [3]	$\int \frac{1}{u} du$ or $\left[\ln(1+x^2) \right]_0^1$ with correct limits cao (must be exact)
(ii) $\int_{0}^{1} \frac{2x}{x+1} dx = \int_{0}^{1} \frac{2x+2-2}{x+1} dx = \int_{0}^{1} (2-\frac{2}{x+1}) dx$ = $[2x-2\ln(x+1)]_{0}^{1}$ = $2-2\ln 2$	M1 A1, A1 A1 A1 [5]	dividing by $(x + 1)$ 2, $-2/(x+1)$
or $\int_{0}^{1} \frac{2x}{x+1} dx$ let $u = x + 1$, $\Rightarrow du = dx$ $= \int_{1}^{2} \frac{2(u-1)}{u} du$ $= \int_{1}^{2} (2 - \frac{2}{u}) du$ $= [2u - 2\ln u]_{1}^{2}$ $= 4 - 2\ln 2 - (2 - 2\ln 1)$ $= 2 - 2\ln 2$	M1 B1 M1 A1 [5]	substituting $u = x + 1$ and $du = dx$ (or du/dx = 1) and correct limits used for u or x 2(u - 1)/u dividing through by u $2u - 2\ln u$ allow ft on $(u - 1)/u$ (i.e. with 2 omitted) o.e. cao (must be exact)

PhysicsAndMathsTutor.com