Question		Answer	Marks	Guidance	
1	(i)	$\begin{aligned} & \frac{\mathrm{d} y}{\mathrm{~d} x}=\sin 2 x+2 x \cos 2 x \\ & \mathrm{~d} y / \mathrm{d} x=0 \text { when } \sin 2 x+2 x \cos 2 x=0 \\ & \Rightarrow \quad \frac{\sin 2 x+2 x \cos 2 x}{\cos 2 x}=0 \\ & \Rightarrow \quad \tan 2 x+2 x=0 * \end{aligned}$	M1 A1 M1 A1 [4]	$\mathrm{d} / \mathrm{d} x(\sin 2 x)=2 \cos 2 x \text { soi }$ cao, mark final answer equating their derivative to zero, provided it has two terms must show evidence of division by $\cos 2 x$	$\begin{aligned} & \text { can be inferred from } \mathrm{d} y / \mathrm{d} x=2 x \cos 2 x \\ & \text { e.g. } \mathrm{d} y / \mathrm{d} x=\tan 2 x+2 x \text { is A0 } \end{aligned}$
	(ii)	$\begin{aligned} & \text { At P, } x \sin 2 x=0 \\ & \quad \Rightarrow \sin 2 x=0,2 x=(0), \pi \Rightarrow x=\pi / 2 \end{aligned}$ At $\mathrm{P}, \mathrm{d} y / \mathrm{d} x=\sin \pi+2(\pi / 2) \cos \pi=-\pi$ Eqn of tangent: $y-0=-\pi(x-\pi / 2)$ $\begin{array}{lr} \Rightarrow & y=-\pi x+\pi^{2} / 2 \\ \Rightarrow & 2 \pi x+2 y=\pi^{2} * \end{array}$ When $x=0, y=\pi^{2} / 2$, so Q is $\left(0, \pi^{2} / 2\right)$	M1 A1 B1 ft M1 A1 M1A1 [7]	$x=\pi / 2$ ft their $\pi / 2$ and their derivative substituting 0 , their $\pi / 2$ and their $-\pi$ into $y-y_{1}=m\left(x-x_{1}\right)$ NB AG can isw inexact answers from $\pi^{2} / 2$	$\begin{aligned} & \text { Finding } x=\pi / 2 \text { using the given line } \\ & \text { equation is M0 } \\ & \text { or their }-\pi \text { into } y=m x+c \text {, and then } \\ & \text { evaluating } c: y=(-\pi) x+c \text {, } \\ & 0=(-\pi)(\pi / 2)+c \mathrm{M} 1 \\ & \Rightarrow c=\pi^{2} / 2 \\ & \Rightarrow y=-\pi x+\pi^{2} / 2 \Rightarrow 2 \pi x+2 y=\pi^{2} * \mathrm{~A} 1 \end{aligned}$
	(iii)	$\begin{aligned} & \text { Area = triangle OPQ - area under curve } \\ & \text { Triangle OPQ }=1 / 2 \times \pi / 2 \times \pi^{2} / 2\left[=\pi^{3} / 8\right] \\ & \text { Parts: } u=x, \mathrm{~d} v / \mathrm{d} x=\sin 2 x \\ & \text { d } u / \mathrm{d} x=1, v=-1 / 2 \cos 2 x \\ & \int_{0}^{\pi / 2} x \sin 2 x \mathrm{~d} x=\left[-\frac{1}{2} x \cos 2 x\right]_{0}^{\pi / 2}-\int_{0}^{\pi / 2}-\frac{1}{2} \cos 2 x \mathrm{~d} x \\ & \quad=\left[-\frac{1}{2} x \cos 2 x+\frac{1}{4} \sin 2 x\right]_{0}^{\pi / 2} \\ & =-\frac{1}{4} \pi \cos \pi+\frac{1}{4} \sin \pi-\left(-0 \cos 0+\frac{1}{4} \sin 0\right)=\frac{1}{4} \pi[-0] \\ & \text { So shaded area }=\pi^{3} / 8-\pi / 4=\pi\left(\pi^{2}-2\right) / 8^{*} \end{aligned}$	M1 B1cao M1 A1ft A1 A1cao A1 [7]	soi (or area under PQ - area under curve allow art 3.9 condone $v=k \cos 2 x$ soi ft their $v=-1 / 2 \cos 2 x$, ignore limits [$-1 / 2 x \cos 2 x+1 / 4 \sin 2 x]$ o.e., must be correct at this stage, ignore limits (so dep previous A1) NB AG must be from fully correct work	area under line may be expressed in integral form or using integral: $\left(\frac{1}{2} \pi^{2}-\pi x\right) \mathrm{d} x=\left[\frac{1}{2} \pi^{2} x-\frac{1}{2} \pi x^{2}\right]_{0}^{\pi / 2}=\frac{\pi^{3}}{4}-\frac{\pi^{3}}{8}\left[=\frac{\pi^{3}}{8}\right]$ v can be inferred from their ' $u v$ '

2(i) $\begin{aligned} & \int_{0}^{1} \frac{x^{3}}{1+x} \mathrm{~d} x \quad \text { let } u=1+x, d u=d x \\ & \text { when } x=0, u=1, \text { when } x=1, u=2 \\ & =\int_{1}^{2} \frac{(u-1)^{3}}{u} \mathrm{~d} u \\ & =\int_{1}^{2} \frac{\left(u^{3}-3 u^{2}+3 u-1\right)}{u} \mathrm{~d} u \\ & =\int_{1}^{2}\left(u^{2}-3 u+3-\frac{1}{u}\right) \mathrm{d} u \\ & \int_{0}^{1} \frac{x^{3}}{1+x} \mathrm{~d} x=\left[\frac{1}{3} u^{3}-\frac{3}{2} u^{2}+3 u-\ln u\right]_{1}^{2} \\ & =\left(\frac{8}{3}-6+6-\ln 2\right)-\left(\frac{1}{3}-\frac{3}{2}+3-\ln 1\right) \\ & =\frac{5}{6}-\ln 2 \end{aligned}$	B1 B1 M1 A1dep B1 M1 A1cao [7]	$\begin{aligned} & a=1, b=2 \\ & (u-1)^{3} / u \end{aligned}$ expanding (correctly) $\operatorname{dep} \mathrm{d} u=\mathrm{d} x \text { (o.e.) AG }$ $\left[\frac{1}{3} u^{3}-\frac{3}{2} u^{2}+3 u-\ln u\right]$ substituting correct limits dep integrated must be exact - must be 5/6	seen anywhere, e.g. in new limits e.g. $\mathrm{d} u / \mathrm{d} x=1$, condone missing $\mathrm{d} x$'s and $\mathrm{d} u$'s, allow $\mathrm{d} u=1$ upper - lower; may be implied from $0.140 \ldots$ must have evaluated $\ln 1=0$
$\begin{array}{ll} \text { (ii) } & y=x^{2} \ln (1+x) \\ \Rightarrow & \frac{d y}{d x}=x^{2} \cdot \frac{1}{1+x}+2 x \cdot \ln (1+x) \\ & =\frac{x^{2}}{1+x}+2 x \ln (1+x) \\ & \text { When } x=0, \mathrm{~d} y / \mathrm{d} x=0+0 \cdot \ln 1=0 \\ \Leftrightarrow & \text { Origin is a stationary point }) \end{array}$	M1 B1 A1 M1 A1cao [5]	Product rule $\mathrm{d} / \mathrm{d} x(\ln (1+x))=1 /(1+x)$ cao (oe) mark final ans substituting $x=0$ into correct deriv www	or $\mathrm{d} / \mathrm{d} x(\ln u)=1 / u$ where $u=1+x$ $\ln 1+x$ is A0 when $x=0, \mathrm{~d} y / \mathrm{d} x=0$ with no evidence of substituting M1A0 but condone missing bracket in $\ln (1+x)$
$\text { (iii) } \begin{aligned} A & =\int_{0}^{1} x^{2} \ln (1+x) \mathrm{d} x \\ \text { let } u & =\ln (1+x), \mathrm{d} v / d x=x^{2} \\ \frac{\mathrm{~d} u}{\mathrm{~d} x} & =\frac{1}{1+x}, v=\frac{1}{3} x^{3} \\ \Rightarrow \quad A & =\left[\frac{1}{3} x^{3} \ln (1+x)\right]_{0}^{1}-\int_{0}^{1} \frac{1}{3} \frac{x^{3}}{1+x} \mathrm{~d} x \\ & =\frac{1}{3} \ln 2-\left(\frac{5}{18}-\frac{1}{3} \ln 2\right) \\ & =\frac{1}{3} \ln 2-\frac{5}{18}+\frac{1}{3} \ln 2 \\ & =\frac{2}{3} \ln 2-\frac{5}{18} \end{aligned}$	B1 M1 A1 B1 B1ft A1 [6]	Correct integral and limits parts correct $\begin{aligned} & =\frac{1}{3} \ln 2-\ldots \\ & \ldots-1 / 3 \text { (result from part (i)) } \\ & \text { cao } \end{aligned}$	condone no $\mathrm{d} x$, limits (and integral) can be implied by subsequent work $u, \mathrm{~d} u / \mathrm{d} x, \mathrm{~d} v / \mathrm{d} x$ and v all correct (oe) condone missing brackets condone missing bracket, can re-work from scratch oe e.g. $=\frac{12 \ln 2-5}{18}, \frac{1}{3} \ln 4-\frac{5}{18}$, etc but must have evaluated $\ln 1=0$ Must combine the two ln terms

$\text { 3(i) } \begin{aligned} \frac{\mathrm{d} y}{\mathrm{~d} x} & =\frac{x^{2} \cdot \frac{1}{x}-\ln x \cdot 2 x}{x^{4}} \\ & =\frac{x-2 x \ln x}{x^{4}} \\ & =\frac{1-2 \ln x}{x^{3}} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { B1 } \\ & \text { A1 } \\ & \\ & \text { A1 } \\ & {[4]} \end{aligned}$	quotient rule with $u=\ln x$ and $v=x^{2}$ $\mathrm{d} / \mathrm{d} x(\ln x)=1 / x$ soi correct expression (o.e.) o.e. cao, mark final answer, but must have divided top and bottom by x	Consistent with their derivatives. $u \mathrm{~d} v \pm v \mathrm{~d} u$ in the quotient rule is M0 Condone $\ln x .2 x=\ln 2 x^{2}$ for this A1 (provided $\ln x .2 x$ is shown) e. $\frac{1}{x^{3}}-\frac{2 \ln x}{x^{3}}, x^{-3}-2 x^{-3} \ln x$
$\begin{aligned} & \text { or } \quad \frac{\mathrm{d} y}{\mathrm{~d} x}= \\ &=-2 x^{-3} \ln x+x^{-2}\left(\frac{1}{x}\right) \\ &=-2 x^{-3} \ln x+x^{-3} \end{aligned}$	$\begin{aligned} & \mathrm{M} 1 \\ & \text { B1 } \\ & \text { A1 } \\ & \text { A1 } \\ & {[4]} \end{aligned}$	product rule with $u=x^{-2}$ and $v=\ln x$ $\mathrm{d} / \mathrm{d} x(\ln x)=1 / x$ soi correct expression o.e. cao, mark final answer, must simplify the $x^{-2} .(1 / x)$ term.	or vice-versa
$\text { (ii) } \begin{aligned} & \int \frac{\ln x}{x^{2}} \mathrm{~d} x \text { let } u=\ln x, \mathrm{~d} u / \mathrm{d} x=1 / x \\ & \quad \mathrm{~d} v / \mathrm{d} x=1 / x^{2}, v=-x^{-1} \\ & =-\frac{1}{x} \ln x+\int_{x}^{1} \cdot \frac{1}{x} \mathrm{~d} x \\ & =-\frac{1}{x} \ln x+\int \frac{1}{x^{2}} \mathrm{~d} x \\ & =-\frac{1}{x} \ln x-\frac{1}{x}+c \\ & =-\frac{1}{x}(\ln x+1)+c^{*} \end{aligned}$	M1 A1 A1 A1 [4]	Integration by parts with $u=\ln x, \mathrm{~d} u / \mathrm{d} x=1 / x, \mathrm{~d} v / \mathrm{d} x=1 / x^{2}, v=-x^{-1}$ must be correct, condone $+c$ condone missing c NB AG must have c shown in final answer	Must be correct at this stage . Need to see $1 / x^{2}$

$\text { 4(i) } \quad \begin{aligned} \int_{0}^{1} \frac{2 x}{x^{2}+1} \mathrm{~d} x & =\left[\ln \left(x^{2}+1\right)\right]_{0}^{1} \\ & =\ln 2 \end{aligned}$	$\begin{aligned} & \text { M2 } \\ & \text { A1 } \\ & {[3]} \end{aligned}$	$\begin{aligned} & {\left[\ln \left(x^{2}+1\right)\right]} \\ & \text { cao (must be exact) } \end{aligned}$
	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & {[3]} \end{aligned}$	$\begin{aligned} & \int \frac{1}{u} \mathrm{~d} u \\ & \text { or }\left[\ln \left(1+x^{2}\right)\right]_{0}^{1} \text { with correct limits } \\ & \text { cao (must be exact) } \end{aligned}$
$\text { (ii) } \begin{aligned} \int_{0}^{1} \frac{2 x}{x+1} \mathrm{~d} x & =\int_{0}^{1} \frac{2 x+2-2}{x+1} \mathrm{~d} x=\int_{0}^{1}\left(2-\frac{2}{x+1}\right) \mathrm{d} x \\ & =[2 x-2 \ln (x+1)]_{0}^{1} \\ & =2-2 \ln 2 \end{aligned}$	M1 A1, A1 A1 A1 [5]	dividing by $(x+1)$ 2, $-2 /(x+1)$
$\text { or } \begin{aligned} \int_{0}^{1} & \frac{2 x}{x+1} \mathrm{~d} x \text { let } u=x+1, \Rightarrow \mathrm{~d} u=\mathrm{d} x \\ & =\int_{1}^{2} \frac{2(u-1)}{u} \mathrm{~d} u \\ & =\int_{1}^{2}\left(2-\frac{2}{u}\right) \mathrm{d} u \\ & =[2 u-2 \ln u]_{1}^{2} \\ & =4-2 \ln 2-(2-2 \ln 1) \\ & =2-2 \ln 2 \end{aligned}$	M1 B1 M1 A1 A1 [5]	substituting $u=x+1$ and $\mathrm{d} u=\mathrm{d} x$ (or $\mathrm{d} u / \mathrm{d} x=1$) and correct limits used for u or x $2(u-1) / u$ dividing through by u $2 u-2 \ln u$ allow ft on $(u-1) / u$ (i.e. with 2 omitted) o.e. cao (must be exact)

